Ramsey-Based Analysis of Parity Automata

نویسندگان

  • Oliver Friedmann
  • Martin Lange
چکیده

Parity automata are a generalisation of Büchi automata that have some interesting advantages over the latter, e.g. determinisability, succinctness and the ability to express certain acceptance conditions like the intersection of a Büchi and a co-Büchi condition directly as a parity condition. Decision problems like universality and inclusion for such automata are PSPACE-complete and have originally been tackled via explicit complementation only. Ramsey-based methods are a later development that avoids explicit complementation but relies on an application of Ramsey’s Theorem for its correctness. In this paper we develop new and explicit Ramsey-based algorithms for the universality and inclusion problem for nondeterministic parity automata. We compare them to Ramsey-based algorithms which are obtained from translating parity automata into Büchi automata first and then applying the known Ramsey-based analysis procedures to the resulting automata. We show that the speed-up in the asymptotic worst-case gained through the new and direct methods is exponential in the number of priorities in the parity automata. We also show that the new algorithms are much more efficient in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic parity generators design using LTEx methodology: A quantum-dot cellular automata based approach

Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...

متن کامل

Generic parity generators design using LTEx methodology: A quantum-dot cellular automata based approach

Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...

متن کامل

Ramsey-Based Inclusion Checking for Dense-Stack Visibly Pushdown Automata

Visibly pushdown automata are popular as they are closed under Boolean operations and determinization. There exist multiple notions of timed pushdown systems like recursive timed automata, densetime pushdown automata. We explore a generalization of visibly pushdown automata over infinite words with parity acceptance condition –in which stack elements have real valued time stamps–named dense-sta...

متن کامل

Büchi Complementation and Size-Change Termination

We compare tools for complementing nondeterministic Büchi automata with a recent termination-analysis algorithm. Complementation of Büchi automata is a key step in program verification. Early constructions using a Ramsey-based argument have been supplanted by rank-based constructions with exponentially better bounds. In 2001 Lee et al. presented the size-change termination (SCT) problem, along ...

متن کامل

Efficient Büchi Universality Checking

The complementation of Büchi automata, required for checking automata universality, remains one of the outstanding automata-theoretic challenges in formal verification. Early constructions using a Ramsey-based argument have been supplanted by rank-based constructions with exponentially better bounds. The best rank-based algorithm for Büchi universality, by Doyen and Raskin, employs a subsumptio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012